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A B S T R A C T

Although machines may be good at mimicking, they are not currently able, as organisms are, to act creatively.
We offer an understanding of the emergent qualities of biological sign processing in terms of generalization, asso-
ciation, and encryption. We use slime mold as a model of minimal cognition and compare it to deep-learning
video game bots, which some claim have evolved beyond their merely quantitative algorithms. We find that
these discrete Turing machine bots are not able to make productive, yet unanticipated, “errors”—necessary for
biological learning—which, based on the physicality of signs, their relatively similar shapes, and relative physi-
cal positions spatially and temporally, lead to emergent effects and make learning and evolution possible. In or-
ganisms, stochastic resonance at the local level can be leveraged for self-organization at the global level. We con-
trast all this to the symbolic processing of today's machine learning, whereby each logic node and memory state
is discrete. Computer codes are produced by external operators, whereas biological symbols are evolved through
an internal encryption process.

1. Introduction

The Next Rembrandt project is a much-celebrated example of a
deep-learning algorithm being used to create art. Project designers
(Korsten, 2016) employed a quantitative approach to capture the
essence of Rembrandt's style with the goal of creating a new but typical
painting. They first created a database of Rembrandt's paintings and
then, because machine learning requires a lot of data, they selected the
most common type, a portrait of a “Caucasian male between the ages
of 30 and 40, with facial hair, wearing black clothes with a white col-
lar and a hat, facing to the right” (pp. 02). Using facial recognition
software, the features of male subjects—the distances between eyes,
length of nose, and width of mouth—were categorized. The color and
topography of painting surfaces were analyzed. After receiving some
corrective feedback from painting experts, the deep-learning network
formulated a three-dimensional digital representation of a Rembrandt-
style portrait, modeled on a man who never existed but who was cre-
ated by AI “imagination.” The Next Rembrandt was then printed onto
canvas in successive layers (Fig. 1).

For comparison, consider Old Woman Cutting her Nails (1655-60)
(Fig. 2), a painting previously attributed to Rembrandt that is now con-

sidered to be the masterful work of his student, who, we can say,
learned the Rembrandt “algorithm.”

In The Next Rembrandt, the subject stands in a dark interior wearing
a bright white collar. In Old Woman, soft light from above reflects off
the subject's bright white blouse. Such illumination is a signature of
Rembrandt. We can describe some of the techniques the master must
have taught the student. More difficult to describe are the other Rem-
brandt-like choices made by the student that make Old Woman a work
of art, not merely a deep fake. The unique aspects of Old Woman Cut-
ting her Nails attract many museum visitors, whereas the commissioned
portraits by Rembrandt, such as those used to train the algorithm in The
Next Rembrandt experiment, do not attract the interest of as many visi-
tors or Rembrandt scholars. While the AI-produced painting may pass
the Turing Test, Old Woman surpasses it. After Rembrandt's student
learned to recognize and formalize the master's style, he went beyond
mere mimicry; the student was able to transform that understanding to
paint a subject unlike one the master had done before. The Next Rem-
brandt misses what makes Rembrandt a great painter rather than just a
highly skilled one.

We begin by offering ways of understanding the qualitative or inter-
pretive aspects of biological information processing as deriving from
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Fig. 1. The Next Rembrandt, 2016.1.

Fig. 2. Old Woman Cutting her Nails, 1655-60.

1 Although ING funded the project, they have not established copyright of
the Next Rembrandt image as a computer cannot hold copyright. See
Schlackman, 2020 .

the use of generalization, association, and encryption, which, we argue,
are semiotic relationships.2 In order to find a basis for minimal cogni-
tion to compare to machine learning, we look at semiosis in a very sim-
ple form of life, the slime mold, Physarum polycephalum. Then we look
at Alan Turing's notions of machine computation in relation to today's
deep-learning video game bots, which some claim have evolved beyond
their merely quantitative algorithms. And finally, as we contrast the
kind of biological “computation” that Turing was investigating late in
his life (Turing, 1952; Alexander, 2018) to machine computation, we
suggest how better artificial models of biological processes might be at-
tempted. Turing's work before and after his biological turn can be iden-
tified with Turing machines and Turing systems, respectively.

The idea that there exist two distinct methods of research, one
quantitative, one qualitative, is as old as the idea that there are objec-
tive and subjective forms of knowledge that do not overlap and are in
some sense opposed to each other, like mutually exclusive modes of re-
ality. Donald Favareau (2010; 3) observes that this physical-mental
dualism was codified by Rene Descartes and has prevented us from ap-
proaching truth with regard to emergent phenomena, which are so re-
sistant to quantitative description; we have been left with unsatisfac-
tory alternatives: either subjective mental processes are beyond the
scope of science to investigate, or subjective mental processes are an il-
lusion, which will be reduced to a quantitative descriptions once the
technological means of investigation have sufficiently advanced.

Favareau points out that we have not always thought of subjective
interpretation as something only animals with brains can do. He notes
that Aristotle and some medieval philosophers had very well developed
concepts of a natural, non-mental semiosis (10). Since we have lost this
concept of non-mental interpretation, we start our analysis with an il-
lustration.

2. Learning in slime molds

2.1. Generalization and association: The relational qualities of
similarity and contiguity

Any single-cell organism capable of chemoreception will illustrate
non-mental semiosis. If a micro-organism can detect a molecule that is
a by-product of a food source, then it may move toward greater con-
centrations of the molecule. Detecting such a by-product is useful for
maintaining its structure and thus moving toward it is habit-forming.
Therefore, we can say that the molecule is meaningful to the organism.
Through a series of affirming rewards, the species has evolved or
“learned” to respond to this associative sign of food.

If this were all there is to organisms, as long as we understood the
evolutionary design, we could quantify this type of intelligent behavior
and predict subsequent actions. But the situation is more complicated.
The chemoreceptor may bind with a different molecule that happens to
mimic the shape of the molecule that comes from the food source. We
can say the mimicking molecule is also a sign, due to its physical simi-
larity to the true sign. If this mimicking sign triggers the response, as if
that response will help the organism capture food, we can say this new
molecule is a mediated sign of a food source that does not, in fact, exist.
Through such error, creativity is possible.3 It can potentially lead to de-

2 Our triad, generalization, association, and encryption, is inspired by
semiotician C.S. Peirce's classifications of different types of signs: icon, index
and symbol (see Peirce, 1992), concepts which we have applied, in previ-
ous work, to subjects similar to the ones explored in this paper (e.g., see
Alexander, 2017 , 2019 ; Castro, 2010 , 2011 ; and Bacigalupi, 2013). For
this work, we chose to use terms not quite so associated with human semio-
sis.

3 Not all creative behavior would be an unmitigated good, of course. Any
error that results in a self-reinforcing effect may be considered a creative act
but may ultimately lead to an ill effect on the agent. One can easily see here
that semiosis is a process by which pathological behavior may emerge.
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veloping a new way of interacting with the environment that might be
functional in a different way. Such fallibility is part of what makes signs
adaptable via selection processes. The similarity between different
signs can lead to generalizations, which can be “right,” leading to the
continuation of a more robust habit or can be “wrong,” but leading to
the discovery of a new habit, if the mistake is not harmful.

Favareau observes that Descartes failed to recognize “fallibility
[as] an intrinsic aspect of the effective functioning of symbolic reason-
ing” and, with tragic consequences for hundreds of years of science, he
“sought a ‘mechanism’ designed to subtract it out of the human reper-
toire entirely” (pp. 25) in order to get at objective truth. But we under-
stand that error is essential to the process of learning new information.
Similarly, as we argue in section 3, machine learning is also designed to
iteratively reduce error, which actually prevents it from developing
true intelligence.

Even more potentially productive than making generalizations is the
kind of error that can be made out of the ability to make associations.
Consider the famous example of the classical conditioning of Pavlov's
dog. In that experiment, an unconditioned stimulus (food odorant) that
triggers a reflex response (salivating) is associated with a new condi-
tioned stimulus (the sound of a bell), so that the new stimulus also trig-
gers the reflex. Experiments with Physarum polycephalum (Shirakawa
et al., 2011), Escherichia coli (Mitchell et al., 2009; Tagkopoulos et al.,
2008) and Paramecium (Armus et al., 2006) show that Pavlovian con-
ditioning may be possible in simple organisms, even those that do not
have a nervous system. As Castro (2010, 2011) argues, P. polycephalum
can be used as a model organism to understand minimal cognition using
semiotics.

P. polycephalum is a single amoeboid organism, called a plasmod-
ium, filled with streaming cytoplasm containing various chemicals,
tube structures, proteins and typically thousands of nuclei. It moves by
changing patterns of electrical potential oscillations (Ridgway and
Durham, 1976; Kishimoto, 1958), contracting tubules at regular inter-
vals and squeezing its bulging pseudopods forward (Wohlfarth-
Bottermann, 1979; Teplov et al., 1991). If it does not detect food
nearby, it moves toward some other quality, such as warmth, which is
usually proximate to food. We note, warmth functions as an associative
sign of food. P. polycephalum has evolved a “default” setting to move in
the direction of warmth: it has a regulatory network mechanism that
inhibits movement toward cooler conditions. Failure to achieve the
goal of finding food in warmer areas will activate a random search of
areas not yet explored; to do this, the inhibition toward cold must be
disinhibited. P. polycephalum will then take a random walk, with the
constraint that it cannot revisit any areas. Takagi et al. (2007) offer re-
action-diffusion equations illustrating how P. polycephalum may make
decisions with self-inhibition in response to temperature or chemical
signals. Thus a few constraints make simple P. polycephalum capable of
some intelligent food-seeking behaviors. The activity of slime mold
may be considered an example of minimal cognition, going beyond
metabolic homeostasis, toward chemical memory, selective searching
and adapting (Nakagaki et al., 2000)Bich and Moreno, 2015; Castro,
2016; Sharov, 2016). Kramar and Alim (2021) note the way slime
mold reorganizes and reshapes its tubular network in the presence of
food signal is reminiscent of neuronal synapses' plasticity. Moreover, as
P. polycephalum's use of bioelectric oscillators may be compared to the
ionic signaling in neurons (Ridgway and Durham, 1976; Levin et al.,
2006; Boussard et al., 2021) it may be considered an appropriate basic
model of animal cognition.

In a classical conditioning experiment, Shirakawa, et al. (2011)
trained P. polycephalum to unlearn its association of warmth with food
and learn a new association of cold with food. In the experiment, a
low-temperature stimulus was used as a conditioned stimulus and a
food source was used as an unconditioned stimulus. After some expo-
sures, a significant number of trained plasmodium acquired a new ten-
dency to move toward the lowest temperature first. As Pavlov's dog

learned to associate the sound of a bell with the receipt of food, causing
the dog to salivate at the sound of a bell, the plasmodium learned to as-
sociate cooler temperatures with finding food, causing it to reverse its
native thermotaxic tendencies.

Further experiments need to be performed, but here we ask, if asso-
ciated learning has occurred what could be the mechanism to explain
it? Shirakawa and Sato (2013) propose a gene regulatory network
model to explain how this associative learning takes place. We note
here that Shirakawa et al. (2011) dismiss out of hand Saigusa et al.’s
(2008) model, which does not depend on genetic expression, to explain
a similar type of association between cold signal and a period of time.
We will come back to Saigusa et al. later.

It is not known what type of specific network P. polycephalum is
likely to use. Shirakawa and Sato's model, depending as it does on pro-
grammed genes responding to environmental triggers, begs the ques-
tion of how the genes were programed to respond to triggers in this
way. The researchers may be slipping into computer programming
metaphors by inserting a priori externally imposed functionality into a
process for discovering this entirely novel behavior. Their cybernetic
circuit relies on a coherent (i.e. low noise) function that might seem to
require significant generational time scales and/or mutation rates to
achieve such a specific circuit via neo-Darwinian selection. We seek an
alternative explanation for the slime mold's capacity to learn rapidly
without reward-punishment selection being employed.

We propose that a much more general Turing system model would
suffice to explain how the associative learning might occur without
necessarily enlisting the aid of real-time genetic repression and expres-
sion. We define a Turing system here as a set of non-linear equations
(See Turing, 1952) describing self-catalyzing activator-inhibitor inter-
actants from which dynamic temporal or spatial patterns emerge, typi-
cally because some of the chemicals involved diffuse/react at faster
rates than other chemicals involved. Turing systems often function as
switches, turning on and off biological processes. They underlie sponta-
neous self-organization and allow large qualitative changes to occur
with small quantitative changes. The emergent temporal or spatial pat-
terns do not initially have a function for the organism but, as with any
regularities, they may be harnessed for functional ends.

The general idea of Shirakawa and Sato's model with or without
the genetic expression works as a Turing system if we assume, as they
do, that the cold receptor and a food receptor are activated simultane-
ously, respectively triggering cold-signal and food-signal transduction
pathways; the food-signal pathway increases the frequency of the plas-
modium's contraction, while the cold-signal pathway inhibits the reac-
tion that causes contraction. As Shirakawa and Sato also show in their
model, two pathways, or networks, could become coupled if one cat-
alyzes the other's activation and that of an inhibitor. Such interference
could lead to a local buildup of a novel by-product that is not produced
when the two different pathways are activated separately. (Under nor-
mal conditions for slime mold, food and cold are not usually coinci-
dent.) Finally, once the by-product is present in sufficient amounts, it
could prevent the inhibition of the contraction. Thus, the cold-signal
would indirectly disinhibit its own inhibition function . As Shirakawa and
Sato also note, the buildup of these by-products would act as tempo-
rary memory, and the plasmodium's movement away from cold could
be disinhibited for as long as the by-products remained available in suf-
ficient amounts, even if the food-signal were no longer present. When
such a conditioned plasmodium encounters cold, it would not automat-
ically move away from cold. Pavlovian conditioning would have
caused unlearning of its association of food with warmth.4 This may
serve as a model of a general mechanism for associative learning.

2.2. Encryption and the quality of arbitrarity

Marcello Barbieri (2003, 2008) argues that new biological conven-
tions can emerge when a physical object (or process) acts as an interme-
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diary to join what would not, under normal conditions, come together
or stay together. In our above analysis of P. polycephalum learning, be-
tween the input, Cold, and the outputs, Move or Don't Move, there ex-
ist multiple, more or less efficient, signal transduction pathways that
could potentially bridge specific outcomes. Likewise, between simulta-
neous inputs, e.g., Cold and Food, and a specific output, Move, there
could exist multiple signal transduction pathways that may act as a
bridge. The possibility for many-to-one and one-to-many relations im-
plies that there is no necessary connection between environmental trig-
gers and responses: the same trigger can activate different responses in
different situations. Therefore, input and output are linked only by
what has emerged, as Barbieri notes, as a natural convention , an en-
cryption process. We can think of the trigger and its response as sym-
bolically encoded.

Unlike the two forms of semiosis that we have discussed so
far—generalizations and associations which are linked by similarity
and contiguity, respectively—encryption produces an arbitrary stand-in
for what it represents, linked by a rule. Like an adaptor that converts
an EU electrical plug to a US one, encryption yokes together two things
that cannot otherwise link. In our case of slime mold here, cold-signal is
yoked together with movement toward cold.

Although biological encryption does depend locally on similarity
where two chemicals at either end of the adaptor react as determined
by stereochemical affinities, this becomes obscured once chains of
adaptors are linked together in complex signal transduction pathways,
like the multiple encryptions of encryptions of a biological Enigma
Code, and we are left with what seems to be a completely arbitrary link
between input and output, any such mapping is, by definition, a biolog-
ical code.

P. polycephalum 's Pavlovian conditioning described in the two ex-
amples above is only temporary. This short-term learning will fade
when the reserve of chemicals runs low. The ability to pass on a new
learning capacity to future generations is what makes evolution of
complexity possible and this process depends upon the preservation
and transmission of the encrypted genetic code, such that the ability
and tendency to build specific proteins that serve specific functions is
preserved and increased in the species' population by the natural selec-
tion of a set of rules (viz. adaptors) that ensures the specificity of the
correspondence between the trigger and the response (See Barbieri,
2017). Barbieri's model works with the genetic, epigenetic and mor-
phogenetic learning regimes with their respective time-scales.

To contrast this process with machine coding, we stress that natural
biological encryption occurs internally. There is no external program-
mer writing the encryption code or constructing an adapter. When bio-
logical systems discover and make use of new mappings, they sponta-
neously encrypt the transformations between input and output, and the
transduction pathways here represent the encryption rule.

We argue that P. polycephalum are capable of learning a new rule
mainly because the chemicals in the transduction pathways are not dis-
crete and may interact and interfere with each other, as we have seen
above in our example of Pavlovian learning in slime mold. While Shi-
rakawa and Sato's regulatory network scheme may be modeled like a
wired circuit as in Fig. 3, such regulatory networks are in reality com-
posed of free-floating chemicals, whose local interactions, with multi-
ple other autocatalytic networks within the churning soup of the
streaming cytoplasm, would be very difficult if not impossible to simu-
late digitally, because such discrete circuits would not be able to inter-
fere with each other, compete for signals or catalyze each other's
processes unless programmed to do so, a priori. On this rests one of our

4 A recent review, Dussutour (2021), looks at the controversial nature of
associative learning in single cell organisms. We note that a theory of signs is
often lacking in the intellectual tool kits of biological researchers, and there-
fore, it is not possible to clearly define what learning is and prove it has oc-
curred. We hope our contribution here will help overcome some of these ob-
stacles.

main critiques of AI as incapable of truly intelligent or creative behav-
ior. Computers have no means of spontaneously developing new codes/
symbols.

The plasmodium is characterized as a network of hundreds or thou-
sands of biochemical oscillators (Kauffman and Wille, 1975;
Matsumoto et al., 1998; Mayne et al., 2016) capable of multiple cou-
pling modes (Grebecki and Cieslawska, 1978). The oscillators function
as local clocks and control peristaltic activity and growth via propaga-
tion of various waves (Vallverdu et al., 2018). It has been shown
(Yamada et al., 2007) that waves of electrical potential change, propa-
gating from various sources of activation or inhibition, collide with
each other forming reaction-diffusion patterns typical of Turing sys-
tems (Adamatzky et al., 2005; Adamatzky, 2010). Radszuweit et al.
(2014) have found that a small plasmodium that is not moving, and
whose cytoplasm is not streaming, can exhibit a variety of spatial pat-
terns that correspond to various Turing patterns, including rotating spi-
rals (single and multiple), traveling and standing waves, and antiphase
oscillations (Turing, 1952). In most large plasmodium some areas of the
cytoplasm are like a stirred beaker, and the pattern will oscillate tem-
porally, not spatially. In the next section, we explore how coordinated
global temporal patterns might emerge from this chaotic collection of
different chemical networks with varying concentrations and frequen-
cies.

2.3. Interference patterns in slime mold activity

Saigusa et al. (2008) demonstrate how a P. polycephalum plasmod-
ium, perturbed three times by a dry cold shock for 10 min every 60
min, can internalize an external cycle. This slime mold, in essence,
learned to anticipate patterns in its environment. In response to each
shock, the plasmodia would temporarily decrease their contraction fre-
quency and hence speed, and then resume foraging. On what would
have been the fourth perturbation according to the established
rhythm, the plasmodia tended to slow again (especially smaller plas-
modia) even though no shock was applied. The newly habituated
slowdown within the tested population dissipated over two more cy-
cles, until the plasmodia resumed their exploratory behavior uninter-
rupted. Six hours later the plasmodia were hit with dry cold air for
10 min after which they resumed foraging. Sixty minutes later, and as
if a Pavlovian bell were being rung, many again slowed on the rhythm
they had internalized previously although no additional cold shock
was applied. The organism responded to a length of time as if it were a
sign of a coming cold shock. As noted above, such “errors” demon-
strate that semiosis is at work and this is a means by which an organ-
ism may be said to initiate novel, anticipatory5 or creative actions.

To help better explain this behavior, Saigusa et al. (2008) devised a
model that assumes a plasmodium has multiple chemical oscillators
that would govern how the local frequency of contractions are per-
turbed and shaped by periods of dry cold. This model is similar to mod-
els by Winfree (1967) and Kuramoto and Nishikawa (1989) and others
of the spontaneous synchronization of multiple oscillators with differ-
ent natural frequencies. Such synchronization has been observed in
groups of flashing fireflies (Buck and Buck, 1976; Buck, 1988) and
chirping crickets (Walker, 1969), to name just two of many biological
examples. There are also many examples of spontaneous synchroniza-
tion in physics, such as lasers arrays (Yu et al., 1995) and microwave os-
cillators (York and Compton, 1991).

5 To “anticipate” is to revisit behaviors previously triggered under similar
previous conditions. Thus, anticipation is backward-looking rather than for-
ward-looking. It is possible that the anticipated events will not occur, and
therefore anticipatory actions are always about objects that are potentially
inexistent, that is, they are always semiotic; the actions “stand for” events
that may not be realized.
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Fig. 3. Shirakawa and Sato (2013) cybernetic circuit-like regulatory network scheme for associative learning in slime mold. (Left) Simu ltaneous inputs
from cold u1 and food u2, inhibit genetic repressors r1 and r2. Expression of proteins P1 and P2 are activated and P2 accumu lates. Cold u1 also activates
the disinhibition on contraction. (Right) A sufficient level of P2 inhibits r1 and r2, and through this positive feedback, P2 sustains its own expression. P2
also inhibits the pathway from u1 to disinhibition; thus, cancelling the avoidance response to cold stimulus. This figures show third and fourth stages of
Shiradawa and Sato's four-part figure. Used by permission.

Different oscillatory chemical pathways involving multiple reac-
tants would have different natural frequencies, and multiple chemical
oscillators in a group with the same frequency, i.e., frequency groups,
would typically be at different points in their phases. As Saigusa et al.
(2008) note, when a dry cold shock of air is first presented to the plas-
modium, each affected pathway oscillator would have different, simi-
lar, or the same characteristic frequency and the phase of each of these
diverse oscillators would be randomly distributed. But, once shocked by
the environment on a rhythm, oscillators of the same frequency as the
rhythm of the environmental shock would cohere phasically upon each
other. And then these groups of oscillators would also cohere with other
groups of similar frequency. Saigusa argues that what caused the plas-
modium to slow down was both the phasic coherence, and subsequent
summation, of oscillators of the same frequency into their respective
phasic grouping and these distinct yet similar groups tending towards
the same phase and summing; it is only this second level of phasic co-
herence, which is hierarchically built on the first coherence, that pro-
duces observable change in macroscopic cellular behavior. When the
environmental stimulation stopped, these distinct groups—the second
coherence of oscillators with similar frequencies—began to dissipate,
which ceased the slowdown of the plasmodium.

However, according to Saigusa et al. hidden order continued to exist
among the oscillators even though the plasmodium had ceased its peri-
odic slowdown: the initial frequency groups—those oscillators of the
same frequency—remained phasically aligned, perhaps because chemi-
cal oscillators of the same frequency become coupled (See Kuramoto
and Nishikawa, 1989 pp. 300). As such, when the shock happened
again in this model, the plasmodium's cytoplasm was already biased
with groups of in-phase oscillators with the same or similar frequencies
to that of the original environmental shocks. A subsequent single shock
many minutes later was enough to re-align the frequency groups that
were still cohered, thus re-instantiating the echoed periodicity. The
conditioned slow down response then occurred at the anticipated
rhythm even though no additional cold dry shock is given. Contiguous
populations of diversely-tuned oscillators respond distinctly to distinct
environmental conditions; but they are not discretely tuned; their dis-
tinct sympathies for environmental stimulation overlap if sufficiently
similar. Via spatio-temporal and a phasic proximity, the cytoplasm can
then harness Turing system resonances, memorize periodicity, and re-
call in the presence of subsequent environmental stimulation. A dry

cold shock is associated with a unit of time due to the coincidence of the
rhythm with a particular point in the phase space of some of the oscilla-
tors.

We argue that, in principle, the so-called ‘noise’ that exists among
differentially tuned chemical oscillators is a basis upon which a system
can harness its sparse order that happens to resonant with the environ-
ment. And, upon this scaffolding, the system can reasonably bias itself
towards increased sensitivity to and anticipation of external patterns.
This opens up the means for coherence, adaptive decoherence and pro-
ductive errors. The diversity of oscillating reactions and their capacity
to resonate and spontaneously cohere results in instantaneous self-
organization and novel adaptive responses without being subjected to
pure randomness and trial and error training, which is the typical ap-
proach for machine learning, as we will explore in section 3. No pre-
cisely tuned circuits are needed for organization. In Saigusa's
model—also Bacigalupi's (2013) below—any given pattern, both its
similar and proximal (i.e., semiotic) qualities can be captured by diverse
oscillators.

Now we can distinguish between two distinct strategies for learning
and adaptation: industry standard digitally implemented, diagramma-
ble cybernetic models limited to discrete externally imposed symbols,
such as in Shirakawa and Sato (2013), and novel models for learning
and adaptation, deriving from more physically-grounded interrelating
similar and contiguous signals, such as in Saigusa et al. (2008). We
have shown how a new mapping between input, a period of time, and
an output, slowing down, is spontaneously created by the organism
without being subjected to an external selection process. This shows
how organisms can create new behavioral codes for themselves. Once
the mapping comes to exist, we might simply describe the resultant
newly encoded switch as being either on or off, but if we do so, we may
lose the information about how such mappings are possible.

Digital strategies are powerful tools that forgo the analog signal in
favor of discrete states: saturated ‘1’ and cut-off ‘0’. These states, or
bits, are fundamentally symbols, because they arbitrarily stand in for
what they represent; their discretized nature deliberately abstracts their
referring capacity away from anything that is physically analogical.
Digitization has many benefits in accuracy and counting in machine
computation. Likewise, as Hoffmeyer and Emmeche (1991) stress, the
digitization of a genetic code functions as a memory that enables the
right proteins to be produced at the right time and in the right amounts
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to ensure past useful responses are reactivated at the appropriate time.
Codes are useful for accurately ensuring that the conditions will be such
(e.g., necessary proteins present) that the steps in a process that have
led to a functional outcome are likely to recur and future organisms can
go directly from A to B to C to D without learning. The process of creat-
ing new biological codes is an error-reducing process that builds upon
and increases the potential of a system to harness the sparse order of
stochastic resonances between its own internal noise and regularities in
the environment. Following a more Cartesian approach, computer pro-
grammers seek to eliminate the interference of a highly complex inter-
active physical system (from which biological codes may sponta-
neously emerge) and instead force externally imposed codes. Re-
searchers who claim simplistically that an organism's behavior is deter-
mined by precisely defined genetic codes, ignore how codes emerge
from analog signs and ignore how the learning process occurs. When
computer programmers try to model organic processes with artificial
digitization, they eliminate the system's ability to react to or refer to
any physical phenomena other than externally imposed logic, which is
itself relegated to the symbolic realm. All abilities to adaptively refer to
the world are in systems sensitive to complex, and often surprising,
physical patterns.

3. Machine intelligence in bots

3.1. Reward and punishment

Can a machine learn similarly to the way we have described an or-
ganism learning? There are similarities, which we will highlight in this
section. As Alan Turing notes in “Intelligent Machinery” (1948), a com-
puter can easily be programed to play a game by following rules, but to
learn to win a game a computer must be able to make mistakes. Playing
a game is similar to how an organism seeks food in nature. The basic
rules and procedures are already known to the organism, that is, it has
inherited the basic biological codes its species has evolved. But, because
there are a number of different ways that an organism might achieve
the goal, Turing argues that trial and error, reward and punishment,
are necessary to train a computer or an organism to win a game. Turing
presents the idea that a computer network that has no biases initially
might become organized by selection pressure, by being rewarded and
punished as it pursues some objective. He was imagining computer net-
works very similar to today's neural networks, whose various levels de-
velop statistical biases as they process information. Animal brains, we
note, also start out as largely unorganized neurons that develop more
and more network biases through use. Every time a pathway is used, it
tends to be reinforced, chemically, in ways that actually change the
physical structure. As neurologist Donald Hebb (1949) so famously ob-
serves, neurons that fire together wire together.

Turing (1948) explains that we can think of a computer being “re-
warded” if it can consult its look-up table and match an equivalent sit-
uation and follow a procedure that did not lead to failure to achieve
the goal. We may say the computer network has the ability to make a
generalization, based on similarity, and thus this process may be com-
pared to biological semiosis. In a video game design with algorithms,
aka bots, being trained in this manner, the bot recognizes its current
state (interprets its current sate as being similar to past states) and re-
sponds accordingly to advance a state closer to the goal. If x then y; if
x' then y. Turing's notion of what a reward might be for a computer is
probably pretty close to what reward can be for an organism. An or-
ganism's equivalent reward would be to follow its usual signal path-
way, the biological habit it has learned through evolution or develop-
ment.

Punishment for a computer in training, according to Turing, would
mean that, if no equivalent situation is found in its memory of past
moves, the next move or state change should be random (1948; 425).
On several occasions, Turing speculated that randomness may provide

humans with a back door for “free will” to emerge. This is an idea that
had interested Turing since he was a young person (1932). But, as we
shall see, adding randomness only pushes an agent to explore new ac-
tions and have more opportunities to be passively shaped by selection.
As random actions have no semiotic relation to the agent, they cannot
represent the “will” of the agent. As we have already discussed, organ-
isms tend to make over-generalizations and mis-associations, which are
self-motivated responses to the environment, not unmotivated random
actions. Let us consider how using randomness to train a bot in a com-
puter game plays out.

In You Shall Not Pass, an OpenAI computer game using deep rein-
forcement learning, a blue stick figure tries to run past a red stick figure
to get to the opposite side of the board while the red one tries to block.
Gleave et al. (2020) tested a well-trained Blue against a Red agent
trained without respect to a reward model. Instead of trying to block
Blue, Red sometimes drops to the ground and curls up into a ball. Al-
though Blue could easily win by simply running past Red to get to the
other side, Blue does not. Because Blue does not have “a distribution of
similar opponents” dropping into a ball in its memory, Blue goes into
random search (pp., 2). And, we assume, because most random moves
will make Blue unstable, Blue falls down 86% of the time, and Red
tends to win. Neural networks have world enough and time to learn us-
ing random search and can go through millions of training years in a
short period of time; eventually Blue will learn to stop falling down and
Red will stop curling up into a ball.

There are some instances in nature when an organism might use ran-
dom search, for example, when Escherichia coli is experiencing extreme
stress, as Glahardo et al. (2007) has noted, it may begin to mutate at
random. Most individuals attempting such a desperate strategy die, just
as Blue tends to die, but a few bacteria in the population might ran-
domly hit on some new process that helps them survive in hostile condi-
tions. This is a very radical innovation strategy. Fortunately, in most
cases, species do not have to learn the hard way via random search and
catastrophic selection events to evolve. While randomness does allow
learning by trial and error to take place, as Turing himself observes in
his 1938 Ph.D. thesis under Alonzo Church, when humans have no idea
what to do, our next moves tend to be better than random and are
based on “intuition” (Turing, 1939; 192–193). Perhaps organisms tend
to switch to tools developed for other contexts because of their capac-
ity to over-generalize and mis-associate. To the extent that an AI bot is
only trained in one context, as Red and Blue are, switching to tools per-
fected for a different objective is not an option. And perhaps organisms’
self-organizing tendencies allow them to resonate with new environ-
ment conditions to learn to anticipate more quickly.

3.2. Bots breaking the game as creative generalization

Late in his short life, Turing continued to pursue more complex ways
of understanding biological intelligence. In a BBC radio broadcasted
talk entitled, “Can Digital Computers Think” (1951), Turing tenta-
tively suggests a different way that computers might be able to tran-
scend the limits of algorithmic thinking through a different kind of
“mistake.” He proposed that if a computer can do things it is not explic-
itly programmed to do, somehow, such actions might be considered
self-motivated. He asks us to reconsider the dictum, that a machine can
only do whatever we know how to order it to perform. He observes,

…there is no need to suppose that, when we give it its orders we
know what we are doing, what the consequences of these orders are
going to be.… If we give the machine a programme which results in
its doing something interesting, which we had not anticipated, I
should be inclined to say that the machine had originated some-
thing, rather than to claim that its behaviour was implicit in the pro-
gramme, and therefore that the originality lies entirely with us.
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In that talk, Turing does not go on to try and give an example of the
kind of mechanism whereby interesting and surprising (to the program-
mer) behavior might emerge. But fortunately, we do have a recent ex-
ample of this happening. In the OpenAI game, Hide and Seek , the AI
bots managed to exploit bugs in the game that the programmers had
not anticipated.6

In the game, both Seeker and Hiders move around the board with a
command that allows them to skate in any 2-dimensional direction.
While the Seekers are counting down from ten, Hiders can re-arrange
walls, boxes and ramps to hide themselves and to lock the Seekers out.
Through many trials wherein the bots try anything and stumble upon
solutions that work, the bots learn to play the game. The reinforcement
learning is accelerated by rewarding the bots for exploring new terri-
tory not just randomly revisiting territory (Baker et al., 2020). This
may be compared to the slime mold's constraints in its random walk to
avoid areas previously explored that did not result in finding food. Af-
ter millions of trials, the Seekers learn they can move ramps and then
use them to get over the walled fortresses that the Hiders have built.
But the Hiders can learn to lock down the ramps to prevent the Seekers
from moving them up against their walls. This is all normal play that
the programmers had anticipated.

But after 390 million iterations a new strategy was discovered. The
Seekers found that, if they move a box near to a fixed ramp and get on
top of the box, they can make the box slide as if they were surfing on it.
The designers had not anticipated that the “move” command would
function on top of the box and move the box with the player. Next the
Seekers learned to position the box near the wall of the Hiders's fortress
and jump into it to win the game. The programmers did not anticipate
this behavior.

An even more surprising defensive strategy was invented by the
Hiders. After many millions of more tries, the Hiders discovered a bug in
the design where the 3-D corner constraints were not well-defined, and
the Hiders chucked the ramps out of the arena. Next the Seekers learned
to exploit a similar bug to chuck themselves over the walls and onto the
Hiders. Missing the relevance of these “breaking the game” innovations
to the way biological repurposing of tools might actually work, Baker
et al. (2020) opine that the “unwanted behaviors” should be eliminated
from future game designs (pp. 8). To compare what we discussed in sec-
tion 2, the bots here may have discovered a novel and surprising tool.
The game designers decided that this type of learning was not allowed
because it was an incorrect action, a mistake, from their perspective.

3.3. General conclusions about AI bots

Although Baker et al. go on to claim that the more predictable in-
stances of developing winning strategies and counter strategies via trial
and error training are appropriate examples of emergent AI learning,
we note that the Hiders and Seekers are only learning how to better play
a game that has well-defined goals, to hide or to seek. The use of ran-
dom searches is a purely quantitative approach since the bots are not
able to distinguish between better moves among equally possible ones
until they try them. They make many stupid moves before discovering
good ones by accident: they are passively molded by a selection process
and it is a stretch to claim the bots had evolved agency.

OpenAI game designers may be preventing their own progress by re-
lying as they do upon the impoverished metaphor of evolutionary
adaptation put forward by Dawkins and Krebs (1979) that focuses on
the “arms race” between and among species. Despite recent claims (Liu
et al., 2019) that qualitatively different cooperative teamwork has
emerged in reinforcement-learning (RL) game play, we note that team
members are merely availing themselves of fellow team members as

6 We thank Benjamin Brihoum and Benjamin Chambolle, students at
ITMO University, for bringing this example of surprising bot behavior to our
attention.

tools. In a truly cooperative ecosystem, species and individuals benefit
off each other's by-products, wastes and excesses, a situation which is
more interdependent than competitive (See Alexander, 2021). Species
often depend upon the survival of their own predators to ensure the
overall health of their ecosystem and themselves. When an OpenAI
game reinvents itself such that the goals of winners and losers become
so coupled that the game never ends, and they spend some time in use-
less “fun” play, that might be considered truly emergent behavior.

Predator and prey, symbiont and parasite mutually create the con-
straints by which ecosystems self-regulate the conversion of energy into
work enabling them to self-repair, self-maintain and self-produce pop-
ulations towards ever greater levels of complexity. Such evolution of
complex and seemingly useless energetic constraints is purposefully ex-
cluded from AI game worlds. The Turing machine's power to simulate
the independent state manipulations of any other Turing equivalent
machine is only made possible by employing symbols that do not res-
onate with environmental conditions and are insulated from such ther-
modynamic processes—such as we explored in the example of resonat-
ing chemical oscillators in Saigusa et al.’s (2008) description of slime
mold learning—which are at the core of living processes. Programmers
trying to preserve this insulated nature of symbols used in machine
computation also prevent a “broken” code that achieves the end in a
surprising way from being passed on to the next game design.

4. General intelligence

4.1. From artificial intelligence to Turing's Turn

Despite popular appeals, there is no credible theory that neurons or
other biological cells are behaving strictly like digital Turing machines.
The Church-Turing thesis outlines a special case of calculation by ma-
nipulating symbols such that any solvable function can be taken as in-
put and its solution automatically output. However, the creative act
that came up with numbers and Turing machines is a behavior that is a
superset of recursive calculation, viz. computation. Based on our analy-
sis we may define creativity, in its most basic form, using semiotics: cre-
ativity can be understood as a response to a trigger as if it were a sign
of something else in the environment when, in fact, that something else
is inexistent; nevertheless, that response leads to an effect that is self-
reinforcing and the agent adopts that response as a new way of negoti-
ating with its world. An organism uses generalization, association and
encryption to learn to pursue new goals, and these are qualitative not
quantitative processes because they build upon qualities that are not
easily quantified, such as similarity and contiguity. Because of this, hu-
mans can do a great deal more than any of the machines we have so far
created.

This gets at why there is an abyssal difference between the symbolic
processing of living systems and that of computers. The computer sym-
bols are given, whereas the biological symbols are evolved, and this im-
plies a process of exploration of qualities that leads to absolute novel-
ties that can be passed on to future generations. If we understand the
emergence of novelty in this way, we can avoid the dualism of a secular
“god of the gaps,” where everything that is not accounted for by the
nature and activities of the encoded nodes themselves is supposed to be
accounted for by the selection of outcomes from random state changes.

We have described some ways in which biological learning might be
mimicked by machine learning, e.g., generalizing as statistical approxi-
mation (when a bot consults its “look up table,” finds a distribution of
similar opponents and responds accordingly), making associations
(Turing systems modeled as entangled cybernetic circuits), and, by
“breaking the game,” repurposing a code in a way not anticipated by
the designers. Nevertheless, game design still depends on a Creator con-
trolling the code, while organisms can evolve and learn entirely with-
out the imposition of an external design.
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The physicality of signs is what is missing from machine processing.
Often it is the chemical reactivity, due to physical shape and bonding
affinity or repulsion, of a signal molecule that determines its relation-
ship to a signal network in an organism. A signal molecule might coin-
cidentally interact with different signal networks in distinct ways re-
sulting in distinct, yet often interrelated, work pathways. This allows
for an immediate generalization that could be a more useful response to
an unfamiliar situation than a random response. Chemical networks
are not all-or-nothing; there are strong and weak reactions due to
many superposed physical attributes. In digital computing, on the other
hand, these numerous simultaneous attributes are excluded by design.
There is no cross-talk in a functioning computer. Consequently, missed
or near-associations may not occur spontaneously in computer game
play.

In the 1950s, Turing began to more aggressively pursue the idea
that biological learning was more complicated than the statistical se-
lection (reward-punishment) of machine learning he had previously en-
visioned. He discovered that another layer of constraint affected indi-
vidual events in a non-linear fashion. While trying to understand how
homogeneous egg cells could suddenly differentiate, he found that sta-
tistically insignificant local fluctuations could spontaneously initiate re-
actions that created a feedback scenario that switched back and forth
between two different reactions, resulting in differential wave fronts,
that is, spatial patterning at the global level. The reactants can func-
tion as self-activators and self-inhibitors.

In one of his last papers before his death “The chemical basis of mor-
phogenesis,” (1952) Turing explores the reaction-diffusion equations
that might explain the spatial patterning in animal patterns. He manu-
ally solved differential equations describing the chemical feedback
loops introduced to create patterns similar to those on, for example, fish
(See Hiscock and Megason, 2015; Kondo, 2017). Turing's idea was that
the self-organizing chemical patterns that differentiated neighboring
cells would differentially trigger genes. Turing systems have also been
found (Raspopovic et al., 2014) to be responsible for the patterning of
digit formation, marking the areas to be carved out of the limb buds to
create fingers and toes; a Turing system is also believed (Nijhout, 1990,
2010) to be responsible for laying down the topography of butterfly
wing patterns (Fig. 5). Pattern formation in these examples occurs in an
essentially homogeneous field of cells. After the initial pattern develops,
the interactions of any further propagating waves become very com-
plex, like the multiple interfering waves propagating from raindrops on
a water surface. The equations used to describe such processes soon be-
come intractable. Consequently, actual biological Turing systems are
not easily identified or modeled except when they first occur in other-
wise undifferentiated fields.

Digital computation works exactly because the symbolically en-
coded states of individual nodes are perfectly determined by the en-
coded states that they have received from other connected nodes,
whereas biological reaction-diffusion processes—as proposed by Tur-
ing in his morphogenesis paper—are physically interactive with each
other, with conditions in the intervening spaces as well as with the
shape of their container. Additionally, the distance between connected
cells affects their outcomes. In the next section, we explore how ma-
chine computation might be designed to better imitate biological infor-
mation processing. We keep in mind that true internally produced code-
poesis may require hardware that grows through a process of artificial
embryonic development, or perhaps, AI might make use of slime mold
in unconventional forms of computing as Adamatzky (2007, 2010) has
explored.

4.2. Modeling resonant response and the emergence of novel global
information

In this section, expanding upon Turing's discoveries in morphogene-
sis, we hypothesize how artificial computing might better approach bi-

ological-type processing by moving beyond the Turing machine as well
as the Turing system. While it is possible that regulatory networks, as
Shirakawa and Sato (2013) describe for slime molds (see Fig. 3), might
be mimicked by computer designers, biological systems have networks
of signal molecules that interact physically and have physical side ef-
fects. As noted above, discrete and independent symbols in digital ma-
chines do not interrelate with their physical conditions. They can simu-
late interrelations; they are not themselves physical interrelations
(Bacigalupi, 2013). This distinction becomes particularly salient when
we ask ourselves how a brain, for example, can create virtual networks
due to the similarities and contiguities of nodes in the network (Kelso et
al., 1991; Uhlhaas et al., 2009; and De Assis, 2015). Global patterns, si-
multaneously affecting and affected by local nodal behavior, act as a
“virtual” network able to leverage similar and contiguous physical phe-
nomena towards non-random adaptation. We argue that life's capacity
to accrue these relatively ephemeral emergent patterns of information
are the basis of memory, adaptive habits and learning. Current AI lacks
this capacity.

The Artificial Life (AL) research that grew out of Turing's chemical
reaction-diffusion model was a step in the right direction but was hin-
dered by a number of factors. As Emmeche (1991) notes, AL is “strong”
AI insofar as it pursues a bottom-up rather than a top-down strategy,
but AL researchers falsely assume that the essence of life can be ade-
quately captured in its form and functions, not its material qualities. To
the extent that AL uses discrete symbols representing chemical states,
some analog information is lost about how chemicals themselves, with
differing rates of reaction and diffusion, may resonate with one an-
other locally, forming global patterns based on contiguity of similar
frequencies. Paul Weiss (1967) is useful in helping us to imagine how
the physical terrain in between the nodes and cells is causal. We see in in-
dividual points the figure as a single shape, a “big dipper” that is incre-
mentally more salient in our perception than surrounding stars (See Fig.
4); perhaps similar to this Gestalt effect, proximal cells' chemical and/
or electromagnetic behavior both mold and are molded by their shared
interstitial surroundings, simultaneously.

We may also compare this to butterfly wing patterns, which are
formed by Turing systems (See Fig. 5).

A number of neuroscientific studies have characterized not only the
local field potentials (LFP) among the cells that collectively generate
them (See Hales and Pockett, 2014), but also how these distributed po-
tential terrains, in turn, modify the behaviors of adjacent cells
(Anastassiou et al., 2011), independent of synaptic signaling, with
functional outcomes (Weiss and Faber, 2010). Alexander and Grimes
(2017) suggest that because neurons are able to respond to signals that
are merely similar to the “correct” one according to their habits, signal
diffusion is less likely to be impeded, and “mistakes” do not prevent the
overall global pattern from emerging, in fact, mistakes may allow it to
do so.

In light of this and similar research, Bacigalupi (2013) argues that in
order to develop machine intelligence that approaches that of biologi-
cal intelligence, each node must be able to respond differently than its
diversely tuned neighbors to energetic patterns in their shared environ-
ment, which is a shared milieu that both affects and is affected by each
diverse nodal response, simultaneously. This may be compared to the
example described in Weiss (1967) as shown in Fig. 4. To illustrate, we
can imagine a population of diversely tuned nodes—the black spots, or
primary nodes, under each frequency designation in Fig. 6—such that
each primary node is sensitive to a distinct range of frequencies, similar
to a loosely tuned tuning forks. In Fig. 6, it is supposed that the C Major
chord has occurred in the system's surroundings; the stimulated primary
nodes are those that are sensitive to frequencies at or close to the musi-
cal notes C, E and G. Importantly, there is no one-to-one mapping; the
C Major chord, composed of its constitutive notes, stimulate an arbi-
trary number of nodes whose distributions of sensitivity can overlap
with sensitivities of other primary nodes. This stimulation, which re-
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Fig. 4. Figure based on Paul Weiss 1 + 1 = ̸ 2 (1967) Droplets of silver salt on a chromate solution-soaked gelatin plate form periodic rings of insoluble silver chro-
mate. The rhythmic character stems from a threshold phenomenon. The interaction between the droplets that are near enough to affect each other forms a virtual
group that has a specific shape, similar to the Big Dipper. Such relationships may constrain the likelihood of recognizing shapes as such.

Fig. 5. The diffusion of a chemical that differentially activates pigmentation in butterfly wing patterns is affected by neighboring conditions, including the wing
edge and the distance between the source points of the diffusing reactant. A normal Bicyclus anynana is shown on the left, a mutant form, called Spotty, is on the
right. From Beldade et al. (2009). Creative Commons.

Fig. 6. At left, select primary nodes respond to an environmental energy pattern—C Major chord in this model—by vibrating to create an interference pat-
tern in their shared physical milieu. At right, biasing connections formed as secondary nodes sense the constructive interference within the emergent inter-
ference pattern. Work equations demonstrate how work capacity of nodes increases as connections synchronize phases of voltage and current response
within connected nodes.
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sults in ripples emanating from stimulated primary nodes, creates an in-
terference pattern in the interstitial physical milieu amongst the di-
versely tuned nodes, which can be electromagnetic, chemical, acoustic
or even of water; no matter the contiguous transductive medium, it can
embody arbitrary levels of superposed patterns. For example, a C Major
chord can co-occur with an E minor chord to create a unique interfer-
ence pattern for C Major 7th. The music theory is not the point, per se; it
merely illustrates how arbitrary levels of complexity—distinct events
and their levels of myriad interrelations—can be embodied in a finite
medium.

This emergent and ephemeral complexity is not an abstraction. Its
ephemeral nature may render it “virtual” with respect to more static
systems. Nevertheless, it is a physical terrain with distinct physical
properties that can be sensed by a secondary sensory system—the gray
secondary nodes between the primary nodes in Fig. 6. These secondary
nodes are sensitive to amplitude such that the emergent order—the
constructive interference in the illustrated interference pattern—can be
harnessed. This harnessing is analogous to growing synaptic connec-
tions that, once formed, bias the network structure. And this novel bias
alters the electrical response such that the adapted system will elicit a
greater response to future occurrences of C Major, or similar acoustic
phenomena, in its surroundings. This is due to the fact that the system is
now more sensitive to more complex patterns in its environment be-
cause the novel circuit biases can synchronize the phasic relationship
between current and voltage among the connected primary nodes. The
work equations in Fig. 6 reflect this synchronization because, as the
phases between alternating voltage and current align due to these ac-
crued biases, more real power (Ii x Vi for each ith node) is available to
do physical work, which in this case would be an amplified system re-
sponse to C Major, or similar patterns.

Such resonating nodes in an artificial system would allow for ways
to cohere, but also simultaneously ways to adaptively decohere, as in
Saigusa's slime mold model, as in productive errors or potentially adap-
tive miss-associations. There would be no artificially added random-
ness in this scenario, but emergent outcomes would be possible that can
allow the nodal state to escape the previously structured state, or local
minimum, a huge problem for current AI.

Because a digital node is specifically designed to not leverage these
overlapping possibilities, the resources needed to simulate interrelations
will increase rapidly and exponentially, whereas a node sensitive to
analog signals could spontaneously form part of a coherence pattern
through its situatedness with other nodes without requiring additional
resources. As Bacigalupi (2013) argues in this hypothetical model, both
environmental physical phenomena and their, relationships are physi-
cally re-created via a novel physical milieu, which creates a global in-
terference pattern, not unlike Turing's (1952) reaction-diffusion pat-
terns. Given this structured “noise,” i.e., initially non-internalized stim-
ulation, from its environment, these patterns can be harnessed by the
system via biased connections discussed above; this emergent and inter-
nalized network biasing is arguably an interpretation of complex signals
from the environment.

This hypothesis leverages the ubiquity of chemical and/or electro-
magnetic interference patterns as means for unsupervised learning, an
area of AI that is underdeveloped compared to supervised learning
strategies. This approach embraces the actual nonlinear physical sys-
tems artificially modeled by Turing's work on morphogenesis. Digital
computers are not well suited to these complex systems. The combina-
torial explosion endemic to computational models of nonlinear systems
is not a burden to living neural systems. On the contrary, neural systems
have had billions of years to take advantage of the ambient and struc-
tured “noise,” our modern technologies and symbolic systems have en-
deavored for hundreds of years to eliminate. The goal of truly intelli-
gent machines would not be to model the complex dynamics, such as
those described above, but to leverage their behaviors towards adap-

tive outcomes, by physically being similar to and contiguous with those
dynamics.

The models proposed by Bacigalupi (2013) and Saigusa et al.
(2008) are both linear summations that exhibit non-linear complex be-
havior through internally emergent physical structures and dynamics.
These internal physical mediums are “molded” through physical expo-
sure to specific energy and mechanical patterns in their environment
and can emerge whenever relevant patterns in their indeterminate envi-
ronment occur in the future. These moldable mediums are the voltage
and phase biased nodes in Bacigalupi and phase biased oscillators in
Saigusa, along with their respective interstitial milieus. In both cases,
there exists a population of diversely “tuned” structures that are physi-
cally sensitive to signals in their internal and external environments. In
addition, each of these mediums exhibit both reactivity at the local os-
cillator and more distributed global responses via their shared milieus:
the interstitial chemical milieu, in the case of Saigusa, and an arbitrary
interstitial transductive physical medium, in the case of Bacigalupi.
This population of diverse structures, in addition to their shared milieu,
creates a physical medium, which can be biased, not just by single pat-
terns (generalizable similarities), but patterns of associated patterns
(contiguities). These internalized complex biases are active learning.
And subsequent passive capacity to respond to these complex patterns
of patterns is the basis for adaptation and codepoesis. From out of these
emergent processes based upon analog qualities of similarity and conti-
guity, a threshold response is generated that can be represented digi-
tally, but it is important to note that such state changes emerge from
the system itself and are not arbitrarily selected by an external pro-
grammer.

5. Conclusions

Despite the fact that we have a number of impressive examples of
AI networks mimicking human activities, playing games, or painting
portraits, we are still a long way from truly intelligent AI. The main ob-
stacle may be the hardware of digital computing itself as well as the
discrete nature of digital symbols. Intelligent adaptability and contex-
tualization seem to require analog dynamics as they involve, at the lo-
cal level, the interrelations of physical qualities of the signs themselves,
their physical forms and how near they happen to be in space and time
to other signs, reinforcing effects, and structural biases. At a shared
global level, which emerges from these local interactions, biological in-
telligence also seems to involve spatial/temporal wave patterns and/or
oscillators that both constrain local sign action and may function as
further, much more dynamic and complex signs.

More generally we have offered an analysis of the similarities and
differences between biological information processing and machine
computation to make the points that 1.) Sign use is not limited to or-
ganisms with mental capacities; sign use, via similarities, contiguities,
and arbitrary encryption, appears in the most primitive of life forms 2.)
Semiosis is not a spiritual or miraculous process inexplicable in material
and relational terms. Indeed, semiosis is the interrelations of material
qualities. 3.) Creating true (albeit primitive) AI is probably not impossi-
ble but will likely require systems with pre-symbolic dynamics, namely
similar and contiguous, in that order. We exhort researchers to note the
essential differences that currently exist between biological and artifi-
cial information processing. Impoverished machine-like models of bio-
logical processes may impede biological research, especially medical re-
search. Conversely, the inappropriate characterization of current ma-
chine learning as “intelligent” may mislead researchers to inappropri-
ately apply AI in human affairs.

Uncited references

, , Nakagaki et al., 2000.

10



V.N. Alexander et al. BioSystems xxx (xxxx) 104430

Declaration of competing interest

We have no conflicts of interest.

References

Alexander, V.N., 2013. Creativity: Self-referential mistaking, not negating. Biosemiotics 6
(2), 253–272.

Alexander, V.N., 2018. Siri fails the turing test: computation, biosemiotics, and artificial
life. Rech. Semiot./Semiot. Inq. 38, 231–250.

Alexander, V.N., 2019. AI, stereotyping on steroids and Alan Turing’s biological
turn. In: Sudmann, A. (Ed.), The Democratization of Artificial Intell igence: Net
Poli tics in the Era of Lear ning Algori thms . Transcript, Bielefeld, Germ any. pp.
43–54.

Alexander, V.N., 2021. Free Range Huma ns: perm aculture farm ing as a
biosemiosic model for poli tical organization. In: Hedlin, Y. , Hope, J. (Eds.),
Food and Medicine: A Biosemiotic Pers pective. Springer, Dordrecht (in press).

Adam atzky, A. , 2010. Physar um Ma chines: Computers from Sl ime Mold. World
Scientific Publishing, Singapore.

Adam atzky, A. , De Lacy Costello, B., Asai , T., 2005. Reaction-Diffusion
Computers. Elsevier, Amsterdam.

Adam atzky, A. , 2007. Physar um ma chine: implementation of a Kolm ogorov-
Uspensky ma chine on a biological substrate. Para llel Process. Lett. 17,
455–467.

Alexander, V.N., Grimes, V., 2017. Fluid biosemiotic mechanisms underlie subconscious
habits. Biosemiotics 10, 337–353.

Anas tass iou, C. , Perin, R. , Ma rkra m, H. , Koch, C. , 2011. Ephaptic coupling of
cortical neurons. Nat. Neurosci. 14, 217–223.

Armus, H. L. , Montgomery , A.R. , Jell ison, J.L. , 2006. Discrimination lear ning in
para mecia (P. caudatum). Psychol. Rec. 56, 489–498.

Baciga lupi, J.A. , 2013. Refinement: a rigorous description of autonomous adaptive
agents. Kybernetes 42, 1313–1324.

Barbieri , M. , 2003. The Or ganic Codes. An Introduction to Sema ntic Biology.
Ca mbridge Universi ty Press, Ca mbridge.

Barbieri , M. , 2008. The Codes of Li fe: the Rules of Ma croevolution. Springer,
Dordrecht.

Barbieri , M. , 2017. How did the eukaryotes evolve?. Biological Theory 12, 13–26.
B. Baker I. Ka nitscheider T. Ma rkov Y. Wu G. Powell B. McGrew I.

Mordatch Emergent tool use from multi-agent Published as a conference paper
at ICLR 2020 Autocurr icula https: //ar xiv.org/abs/1909.07528 2020

Beldade, P., Sa enko, S. , Pul, N., Long, A. , 2009. A gene-based linkage ma p for
Bicyclus anynana butterflies al lows for a comprehensive analys is of synteny
with the Lepidopteran reference genome. PLoS Genet. 5, e1000366.

Boussa rd, A. , Fess el, A. , Oettmeier, C. , Bria rd, L. , Döbereiner, H. , Duss utour, A. ,
2021. Adaptive behaviour and lear ning in sl ime moulds: the ro le of
oscillations. Philosophical Transa ctions of the Roya l Society B 376 (in press).

Bich, L. , Moreno, A. , 2015. The ro le of regula tion in the or ig in and synthetic
modeling of minima l cognition. Biosys tems 148, 12–21.

Buck, J., 1988. Synchronous rhythmic flas hing of fireflies. QRB (Q. Rev. Biol .) 63,
265–289.

Buck, J., Buck, E., 1976. Synchronous fireflies. Sci. Am. 234, 74–85.
Ca stro , O. , 2010. La biosemiótica y la biología cognitiva en organism os sin

si stema nerv ioso . Ludus Vitalis 15, 47–84.
Ca stro , O. , 2011. Principles of minima l cognition in sm ar t sl ime molds and social

bacteria . Pensam iento 67, 787–797.
Ca stro , O. , 2016. Filosofía de la Biología Cognitiva. Enfoque biosemiótico de la

cognición en organism os sin si stema nerv ioso : El caso de los mixomicetos Ph.
D. thesis Autonomous Universi ty of Barcelona. https: //ddd.uab.cat/record/
164363.

Dawkins, R. , Kr ebs, J.R. , 1979. Arms ra ces between and within species. Proc. R.
Soc. London, Ser. A or B 205, 489–511.

De Assi s, L. , 2015. Neural binding, consciousness, and mental disorder:
complexi ty as a comm on element. Journal for Neurocognitive Resear ch 57,
110–121.

Duss utour, A. , 2021. Lear ning in single cell organism s. Biochem. Biophys. Res.
Comm un. (in press).

Emmeche, C. , 1991. Semiotical reflection on biology, living signs and Artificial
Li fe. Biol . Philos . 6, 325–340.

Fava reau, D., 2010. Essentia l Readings in Biosemiotics: Anthology and
Comm entary . Springer, Dordrecht.

Glahar do, R. , Ha stings , P., Rosenberg, S. , 2007. Mutation as a stress response and
the regula tion of evolvabili ty. Cr it. Rev. Biochem. Mol. Biol . 42, 399–435.

A. Gleave M. Dennis C. Wild N. Ka nt S. Levine S. Russ ell Advers ar ia l policies:
attacking deep reinforcement lear ning Published as a conference paper
at https: //ar xiv.org/abs/1905.10615 2020 s17 December 2020

Grebecki , A. , Cieslawska , M. , 1978. Plas modium of physar um polycephalum as a
synchronous contra ctile sy stem. Cy tobiologie 17, 335–342.

Ha les, C. , Pockett, S. , 2014. The rela tionship between local field potentia ls (LFPs)
and the electromagnetic fields that give ri se to them. Front. Syst. Neurosci. 8,
1–4.

Hebb, D.O. , 1949. The Or ganization of Behavior . Wiley & Sons, New York .
Hi scock, T., Mega son, S. , 2015. Or ientation of Turing-like patterns by morphogen

gradients and tiss ue anisotropies. Cell Systems 1, 408–416.
Hoffmeyer, J., Emmeche, C. , 1991. Code-dual ity and the semiotics of nature. In:

Myrdene Anders on, M. , Merr ell, F. (Eds.), On Semiotic Modeling. Mouton de
Gruyter, New York . pp. 117–166.

Ka uffman, S. , Wille, J.J., 1975. The mi totic oscillator in physar um polycephalum.
J. Theor. Biol . 55, 47–93.

Kelso, J., Bressl er, S. L. , Buchanan, S. , DeGuzman, G.C. , Ding, M. , Fuchs, A. ,
Ho lroydet, T., 1991. A phas e transi tion in huma n brain and behavior . Phys .
Lett. 169, 134–144.

Kishimoto, U., 1958. Rhythmicity in the protopla sm ic stream ing of a sl ime mold,
physar um polycephalum: II Theoretical treatment of the electric potentia l
rhythm. J. Gen. Phys iol. 41, 1223–1244.

Kondo, S. , 2017. An updated kernel-based Turing model for studying the
mechanisms of biological pattern form ation. J. Theor. Biol . 414, 120–127.

B. Kors ten The Next Rembra ndt https: //www.nextrembra ndt.com 2016
Kr am ar , M. , Alim , K. , 2021. Encoding memory in tube diam eter hierar chy of

living flow network. Proceedings of the Natura l Academy of Sciences 118 (in
press).

Kura moto, Y. , Nishikawa, I. , 1989. Onset of collective rhythms in la rge
popula tions of coupled oscillator s. In: Takayama , H. (Ed.), Cooperative
Dynamics in Complex Phys ical Systems, Springer, Berl in. pp. 300–306.

Levin, M. , Buznikov, G.A. , Lauder, J.M. , 2006. Of minds and embryos: left-ri ght
as ym metry and the sero tonerg ic contro ls of pre-neural morphogenesi s. Dev.
Neurosci. 28, 171–185.

Liu, S. , Lever, G., Heess, N., Merel, J., Tunyas uvunakool, S. , Graepel, T., 2019.
Emergent coordination through competition. In: International Conference on
Lear ning Representations. https: //ar xiv.org/abs/1902.07151. (Access ed 17
December 2020).

Ma tsumoto, K. , Ueda, T., Kobatake, Y. , 1998. Revers al of thermotaxi s with
oscillatory stimulation in the plas modium of physar um polycephalum. J.
Theor. Biol . 131, 175–182.

Ma yne, R. , Jones, J., Gale, E., Adam atzky, A. , 2016. On coupled oscillator
dynamics and incident behaviour patterns in sl ime mould Physar um
polycephalum: emergence of wave packets, global stream ing clock frequencies
and anticipation of periodic stimuli. Int. J. Para llel, Emergent Distributed Syst.
32, 85–118.

Mitchell , A. , Roma no, G.H. , Groism an, B., Yona, A. , Dekel, E., Kupiec, M. , 2009.
Adaptive prediction of environmental changes by microorganisms . Nature
460, 220–224.

Nakagaki , T., Ya ma da, H. , Toth, A. , 2000. Ma ze solv ing by an am oeboid
organism . Nature 407, 470.

Nijhout, H. F. , 1990. A comprehensive model for colour pattern form ation in
butterflies. Proceedings of the Roya l Society of Biology 239, 81–113.

Nijhout, H. F. , 2010. Molecula r and phys iological basi s of colour pattern
form ation. Adv. Insect Phys iol 38, 219–265.

Peir ce, C. S. , 1992. On the algebra of logic: a contribution to the philosophy of
notation. In: Houser, N., Kloesel, C. (Eds.), The Essentia l Peir ce: Selected
Philosophical Writings I (1867-1893). Indiana Universi ty Press, Indianapolis ,
pp. 225–228.

Ra spopovic, J., Ma rcon, L. , Russ o, L. , Shar pe, J., 2014. Digi t patterning is
contro lled by a Bmp-Sox9-Wnt Turing network modula ted by morphogen
gradients. Science 345, 566–570.

Radszuweit, M. , Engel, H. , Bar, M. , 2014. Active poroelas tic model for
mechanochemical patterns in protopla sm ic droplets of Physar um
polycephalum. PloS One 9, 1–12.

Ridgway, E., Durham , A. , 1976. Os cillations of calcium ion concentrations in
physar um polycephalum. J. Cell Biol . 69, 223–226.

Sa igusa, T., Tero , A. , Nakagaki , T., Kura moto, Y. , 2008. Amoebae anticipate
periodic events. Phys . Rev. Lett. 100, 018101.

Schlackman, S. , 2020. Who holds the copyright in AI created ar t. Art Law Journal
Sept 29, 2020 https: //al j. ar trepreneur.com/the-next-rembra ndt-who-holds-the-
copyright-in-computer-genera ted-ar t/. (Access ed 28 February 2021).

Shar ov, A. , 2016. Evolutionary biosemiotics and multilevel construction
networks . Biosemiotics 9, 399–416.

Shirakawa, T., Sa to, H. , 2013. Construction of a mo lecula r lear ning network.
Journal of Advanced Computational Intell igence 17, 913–918.

Shirakawa, T., Gunji, Y. P., Miyake, Y. , 2011. An as sociative lear ning experiment
using the plas modium of physar um polycephalum. Nano Comm unication
Networks 2, 99–105.

Takagi , S. , Nishiura , Y. , Nakagaki , T., Ueda, T., Ueda, K. -I. , 2007. Indecisive
behavior of am oeba crossing an environmental barr ier. In: Kousuke, Y. (Ed.),
et al ., Topological Aspects of Cr itical Systems and Networks . World Scientific,
Singapore. pp. 86–93.

Tagkopoulos, I. , Liu, Y. C. , Tavazoie, S. , 2008. Predictive behavior within
microbia l genetic networks . Science 320, 1313–1317.

Teplov, V. , Roma novsky, Y. M. , La tushkin, O. , 1991. A continuum model of
contra ction waves and protopla sm stream ing in stra nds of physar um
plas modium. Biosys tems 24, 269–289.

Turing, A. , 1932. Nature of Spir it. http://www.turingar chive.org/browse.php/C/
29. (Access ed 3 February 2017).

Turing, A. , 1939. Systems of logic based on ordinals . Proceedings of the
Ma thematical Society, Seri es 2 (45), 161–228.

Turing, A. , 1948. Intell igent ma chinery. In: Copeland, J. (Ed.), The Essentia l
Turing. Ox ford Universi ty Press, Ox ford. pp. 395–432.

A. Turing Ca n Digi tal Computers Think? Annotations of a Talk Broadcas t on BBC
Third Progra mm e, 15 Ma y 1951 http://www.turingar chive.org/browse.php/
B/5 1951

Turing, A. , 1952. The chemical basi s of morphogenesi s. Philos . Trans. R. Soc.

11

http://refhub.elsevier.com/S0303-2647(21)00085-X/optQPWCMTeRiE
http://refhub.elsevier.com/S0303-2647(21)00085-X/optQPWCMTeRiE
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref1
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref1
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref2
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref2
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref2
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref2
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref3
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref3
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref3
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref5
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref5
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref6
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref6
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref7
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref7
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref7
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref4
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref4
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref8
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref8
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref9
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref9
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref10
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref10
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref11
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref11
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref12
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref12
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref13
https://arxiv.org/abs/1909.07528
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref15
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref15
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref15
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref16
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref16
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref16
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref17
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref17
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref18
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref18
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref19
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref20
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref20
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref21
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref21
https://ddd.uab.cat/record/164363
https://ddd.uab.cat/record/164363
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref24
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref24
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref25
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref25
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref25
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref26
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref26
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref27
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref27
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref28
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref28
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref29
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref29
https://arxiv.org/abs/1905.10615
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref32
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref32
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref33
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref33
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref33
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref34
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref35
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref35
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref36
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref36
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref36
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref37
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref37
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref38
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref38
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref38
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref39
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref39
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref39
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref40
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref40
https://www.nextrembrandt.com/
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref42
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref42
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref42
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref43
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref43
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref43
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref44
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref44
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref44
https://arxiv.org/abs/1902.07151
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref46
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref46
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref46
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref47
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref47
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref47
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref47
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref47
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref48
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref48
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref48
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref49
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref49
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref50
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref50
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref51
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref51
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref52
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref52
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref52
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref52
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref53
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref53
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref53
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref54
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref54
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref54
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref55
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref55
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref56
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref56
https://alj.artrepreneur.com/the-next-rembrandt-who-holds-the-copyright-in-computer-generated-art/
https://alj.artrepreneur.com/the-next-rembrandt-who-holds-the-copyright-in-computer-generated-art/
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref58
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref58
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref59
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref59
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref60
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref60
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref60
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref61
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref61
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref61
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref61
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref62
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref62
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref63
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref63
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref63
http://www.turingarchive.org/browse.php/C/29
http://www.turingarchive.org/browse.php/C/29
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref65
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref65
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref66
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref66
http://www.turingarchive.org/browse.php/B/5
http://www.turingarchive.org/browse.php/B/5
http://refhub.elsevier.com/S0303-2647(21)00085-X/sref68


V.N. Alexander et al. BioSystems xxx (xxxx) 104430

Lond. Ser. B 237, 37–72.
Uhlhaa s, P., Pipa, G., Lima , B., Melloni, L. , Neuenschwander, S. , Nikolic, D.,

Singer, W., 2009. Neural synchrony in cortical networks : history, concept and
curr ent Status. Front. Integr . Neurosci. 3, 1–19.

Vallverdu, J.M. , Ca stro , O. , Ma ynec, R. , Talanov, M. , Levin, M. , Baluškae, F. ,
Gunji, Y. , Duss utour, A. , Zenil, H. , Adam atzky, A. , 2018. Sl ime mould: the
fundam ental mechanisms of biological cognition. Biosys tems 165, 57–70.

Walker, T.J., 1969. Acoustic synchrony: two mechanisms in the snowy tree cricket.
Science 166, 891–894.
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